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A PROBLEM OF DYER, PORCELLI,
AND ROSENFELD

BY
JOHN G. AIKEN

ABSTRACT

In this paper, we will demonstrate that a conjecture of Dyer, Porcelli, and
Rosenfeld is correct. In fact, we will show that if M is any finite von Neumann
factor and A is any non-zero element of M, then there exists a T in M such that
the spectrum of T+ A is disjoint from the spectrum of T, i.e. such that
o(T+AYNo(T)=2.

1. Introduction

In this paper, the author presents a solution to a problem posed in [2] by Dyer,
Porcelli, and Rosenfeld for a II; factor. An entirely different solution has been
obtained independently by Stratilia and Zsido [5]. Their solution extends the
argument given in [2] for a I, factor. We extend the argument given in [2] fora L.
factor. The crux of our argument is to extend lemma 4 of [2] which states that for
all Hermitian elements A not belonging to a proper two sided ideal of a L. factor
(A = A*), there exists a Hermitian T in the factor such that the spectrum of
T+ iA contains no real numbers. (i =V — 1.) We will extend this result to the
following theorem:

THEOREM B. Let A be a non-zero Hermitian element of a finite factor M.
There exists a Hermitian element T of M such that the spectrum of T + iA contains
no real numbers, i.e. such that

o(T+iA)NR=0.

These results have previously appeared in the author’s dissertation [1], where
it is also shown that Theorems B and C generalize to any W *-algebra but that
Theorem C does not generalize to the shift algebra, the C* algebra generated by
the Toeplitz operators with continuous symbol.

The author wishes to express his gratitude to Professors Dyer and Porcelli for
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several helpful discussions and to Professor E. L. Griffin for his continued advice
and encouragement.

2. The matrices P, and T,

In this section we prove a very special case of Theorem B. Let T, bean n X n
matrix with ones on the subdiagonal and superdiagonal and zeroes everywhere
else. Let P, be a matrix with a one in the lower right hand corner and zeroes
everywhere else. For n = 1, we take T, =0 and P, = 1. For n = 3, the pictures
are

0 1 0
T3=(1 0 1)
0 1 0
and
0 0 0
P, = (0 0 0)
0 0 1/ .

Lemma 2.1. o(T.+iP.)NR =.

Proor. Let p.(t) be the determinant of T, + iP, — ¢, and let g.(¢) be the
determinant of T, — ¢. Hence p,(t) =i —t and ¢,(t) = — t. Since the determinant
is linear in the last row, p.(t) = g.(1) + ig.-.(t), if we take go(t) to be identically
equal to one. On the other hand,

g (1) = = 1qu-1(t) — gu-o(t)

with initialization go(t)=1 and q.(t)= —t.

Now suppose t € o(T, + iP.) N R. Then p.(t) =0 and hence g.(t) = g.-:(t)
= 0. Hence go(t) = 0 by the above recursion relation, but this contradicts qo(t)
=1. Hence o(T,+iP.)ONR = (. Q.E.D.

3. The case when M is a I, factor

In this section we will prove Theorem B when M is a I, factor. In this case, M
is isomorphic to the algebra of linear transformations on a finite dimensional
Hilbert space H. Let 0# A = A*€ M. We will use P, and T, of the previous
section to construct a T = T* & M such that o(T+iA)NR =J.

The following construction will yield T =0 if A is invertible. In this case,
o(T+iA)NR=0c(iIA)NR =0.
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Choose an orthonormal basis {e}i-, for H so that A is represented by a
diagonal matrix. Reorder the basis so that the first m basis vectors span the
kernel of A (m <k).Let n=m + 1. Let a € a(A) be the first non-zero entry
on the diagonal of the matrix of A. The matrix of A is either equal to aP, oris
equal to the direct sum of aP, with an invertible matrix D = D*. We may write
A = aP,©D with the understanding that D may be void. Let T = aT, G0 if
D# @ and T = aT, if D = (. Then o(iD)N R ={J and

o(T +iA) = o(aT, + iaP,) U a(iD)

so that o{T +iA)N R = by Lemma 2.1. Q.E.D.

In the above proof, we have used the fact that the spectrum of a direct sum of
matrices is the union of the spectrum of the matrices. In general we will say that
Q is the direct sum of E and F, Q = EBF, if Q = E + F and there exists a
projection S (S = $*= S*) such that E = SES and F = (1—- S)F(1 - S). We will
use the facts that the inverse of a direct sum is the direct sum of the inverses and
the norm of a direct sum is the supremum of the norms without comment in the
following sections.

The proof of Theorem B when M is a II, factor is similar to the above
argument. The diagonalization of A is replaced by the spectral decomposition of
A. The orthonormal basis e; for H is replaced by a set of equivalent orthogonal
projections P,; in M. The major difficulty is that the equality A = aP.@D is
replaced by an approximation A ~ 2®a,P,,@D. The development of these ideas
is the subject of the next two sections.

4. A technical lemma

M will denote a II; factor throughout this section. A will be a non-zero
Hermitian element of M with zero and one in its spectrum. In this section, we
will prove a technical lemma which will allow A to be approximated by a linear
combination of projections in a very special manner. These projections will be
closely related to the spectral family {P(E)}cce of A (E runs over the Borel
subsets of R, and A = [rxdP(x).)

For any projection X € M, dim X will denote the von Neumann dimension of
X. Since 1€ o(A), we may choose a positive number ¢ such that

1) 0< ¢ < dim P[3/4, 5/4).

In other words, c is less than the dimension of the spectral projection of A over
the half open interval [3/4, 5/4).
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Lemma 4.1.  For any positive integer k, there exists k numbers, 3/4=a,=--- =
ax =5/4, and k orthogonal projections, P, (i = 1,---, k), such that

) P, commutes with A,

3 dim P, = c/k,

and

4) P(a.-,a)= P, = Plai-i,a) for all i€{l,--- k}

where a, = 3/4.

Proor. The proof is by induction on i. As our induction hypothesis we take
the conclusions of the lemma and

) Pla,, @) = le P, = Pla,, ai] -

For i =1, we define
a,= sup {d € R|dim P[a,, d) < c/k}

where we take P[ao, d) =0 if d = a,. Hence a, = a,. Condition (1) insures that
a; = 5/4. The continuity of the von Neumann dimension function and the fact
that P[ao, a,) is the supremum of {P[ao, d)|d < a,} imply that dim P[a,, a,) =
c¢/k. Similarly, dim P[a,, a,]) = c/k. Hence dimP[a,,a,] = c/k — dimP[ao,a:)Z 0
and we may choose a projection Q = Pla;,a;] such that dimQ =
c¢/k — dim Play, ai).

If we let P, = P[ao, a,) @ Q, we will have satisfied our induction hypothesis for
i = 1. In fact P, commutes with A since it commutes with the spectral family
of A so that (2) follows. The calculation dim P,=dim P[a,,a:)
+ ¢/k ~dim P[a,, a,) = c/k demonstrates (3). P, satisfies (4) and (5) since
Q = Pla,, a)]. Finally, a, < 5/4 since dim P[a,, a,) = c/k = ¢ < dim P[3/4, 5/4)
by (5) and (1).

Fix i such that 1<i = k. Suppose that a; and P, have been constructed to
satisfy our induction hypothesis for all j <.

Let X =1—ZiZ} P, We will mimic the argument for the case i = 1 by replacing
a, with a; and P(E) with P(E)X. Hence we define

a, = sup{d € R|dim Plao, d)X <c/k}.

Condition (5) with i replaced by i — 1 implies that P[a,, d)X = P[ai-,, d)X.
Hence a;, = a. As before, dim P[ao, @)X =c/k and dim P[a,, a;]X = c/k.
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Hence we may choose a projection Q; = Pla;, a;]X such that dimQ; =
¢/k —dim P[a,, a:)X. If we let P, = P[ao, a:)X@Q, then we will satisfy our
induction hypothesis. In fact, (2) and (3) follow precisely as in the case when
i = 1. (5) may be demonstrated as follows:

-1 i
P[ao, a,')=P[a0, a.-)ZPj@P[ao, a,-)XéZPi §P[a0, a,‘].
j=t j=1

(4) is a consequence of (5), and the fact that a; = 5/4 follows from (1) and (5):

dim P[a,, @) = ci/k = ¢ < dim P[3/4, 5/4). Q.E.D.

5. The case when M is a II, factor

In this section, we prove Theorem B when M is a II, factor. The proof will be
an application of the matrices T, and P, as in the case when M is a I, factor. The
basic constant governing the use of T, and P, is the supremum of the norms of
(T, +iP.—t)",

d, = sup | (T, +iP, — )",
where t €ER. d, <® by Lemma 2.1. The reason d, is crucial is the following
lemma.

LEMMA 5.1. Let B and C be elements of a Banach algebra with identity.
Suppose that o(B)N R =& and that

IC-Bl <1/sqp||(B—t)“||
where t varies over the real numbers R. Then
a(C)NR =0.

The proof of Lemma 5.1 follows from the equality
(C-0'=B-0"' 2 [(B-C)YB-)"T
n=0

which holds for ||(B — C)|||(B —¢)'|| <1 (see Halmos [3], pp. 53, 151, 245,
248). With these preliminaries disposed of, we are ready to prove Theorem B for
a II, factor M.

Let 0 # A = A* € M. Without loss of generality, we may assume that 0 and 1
are in the spectrum of A. P(E) will be the spectral family of A and “dim’ will be
the von Neumann dimension function as in the previous section.
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The construction of a T such that (T +iA)N R = Jand T = T* proceeds in
six steps:
1) Let m be a positive integer such that

(dim P[ - 1/4, 1/4])/m < (dim P[3/4, 5/4))/2.

2) Let n=m+1. Let £ >0, ¢ <1/4, and & < (3/4)/d.
3) Choose a positive integer k >1/(2¢) and divide P[—¢, €] into mk
equivalent orthogonal projections P,, (h =1,---,m and i=1,---,k):

P[-¢ €]= iP,.,,.

From step 1), dim P, = dim P{ - ¢, £]/mk < dim P[3/4, 5/4)/2k. Loosely speak-
ing, this means that 2k copies of P, will fit into P[3/4, 5/4).

4) We may apply Lemma 4.1 with ¢ replaced by 2 dim P[— ¢, ¢]/m and k
replaced by 2k to obtain 2k numbers a; and 2k orthogonal projections P} which
are equivalent to P,, and which satisfy

i) P: commutes with A,

i) 3/4=av=a, - = ax =5/4,

iti) P(ai-y, @)= P!=Pla.-,, a)foralli=1,--- 2k.

5) Choose k of the ordered pairs (P, a;) with a, — a.-, < ¢ and call them
(P.;, a). Now i =1, -+ k again. k such P; exist for otherwise

2

=

a—a_>ke>12

1

]

by our choice of k. But this contradicts condition ii) on the a.. Recall that we set

n=m+1 in step two.
The point is that

a3~ San =

where h=1,---,n and i =1, -, k, as follows from the spectral theorem, the
fact that a, — a,_, < ¢, and the choice of the P,; in steps 3) and 4)'. Furthermore,
A(1-2% P,,) is invertible in (1~ Z2P.o)M (1 -2 P,;).

6) Let T,; have the matrix of T, in the basis Py, - -, P... In other words, let
T.. = 27, U,; + U%,where U, is a partial isometry with initial domain P,; and
final range P,.... Let T=2%4T,. Now apply Lemma 5.1 in the algebra
SeP. MZIEP,, with B=T+i2®aP,, and C=T+iAZ,,;P.; to obtain

| ! II«‘)\E[i?.P.‘,i —]T:a.PM || =sup{|| AZEn, & Puill, |AZ®P,, —Z2alP,. [} = sup.{| AP(- &),
(A —-a)Pla_all|}=-
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o(T+iA)NR=0.

Lemma 5.1 applies since ¢(B)N R = by Lemma 2.1" and

= & < (3/4)/d,

1B-cl=[aZr. - Sar,
and

sup

(r+iZar=1) | <diem

since 1/a; < 1/(3/4). QED

6. Conclusion

Section 5 completes the proof of Theorem B. Using the same argument as in
the proof of Theorem B of [2], we obtain our Theorem C:

THEOREM C. Forall non-zero A in a finite factor M, there existsa T € M such
that o(T+ A)No(T)=D.

It is easy to see that if A is contained in a proper two sided ideal of a Banach
algebra with identity, M, then o(T+ A)No(T)# D for all TE M (this is
theorem A of [1]). Hence the well-known fact that the finite factors are simple
(i.e. they have no non-zero proper two sided ideals) is a consequence of our
arguments. It would be interesting to know if Theorem C is true when M is an
arbitrary simple C*-algebra.
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