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A PROBLEM OF DYER, PORCELLI, 
AND ROSENFELD 

BY 

JOHN G, AIKEN 

ABSTRACT 

In this paper, we will demonstrate that a conjecture of Dyer, Porcelli, and 
Rosenfeld is correct. In fact, we will show that if M is any finite von Neumann 
factor and A is any non-zero element of M, then there exists a T in M such that 
the spectrum of T+A is disjoint from the spectrum of T, i.e. such that 
o-(T+ A)A o'(T) = ~. 

I. Introduction 

In this paper,  the author  presents a solution to a problem posed in [2] by Dyer,  

Porcelli, and Rosenfeld for a IIz factor. An entirely different solution has been 

obtained independently by Stratilia and Zsido [5]. Their  solution extends the 

argument  given in [2] for a I ,  factor. We extend the argument  given in [2] for a L 

factor. The crux of our argument  is to extend lemma 4 of [2] which states that for 

all Hermit ian elements A not belonging to a proper  two sided ideal of a L factor 

(A = A*) ,  there exists a Hermit ian T in the factor such that the spectrum of 

T + iA contains no real numbers.  (i = V ' -  1.) We will extend this result to the 

following theorem: 

THEOREM B. Let A be a non-zero Hermitian element of a finite factor M. 

There exists a Hermitian element T of M such that the spectrum o f T  + iA contains 

no real numbers, i.e. such that 

o-(T + iA ) n R = ~ .  

These results have previously appeared  in the author 's  dissertation [1], where 

it is also shown that Theorems  B and C generalize to any W*-algebra but that 

Theorem C does not generalize to the shift algebra, the C* algebra generated by 

the Toeplitz operators  with continuous symbol. 

The author wishes to express his gratitude to Professors Dyer  and Porcelli for 
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several helpful discussions and to Professor E. L. Griffin for his continued advice 

and encouragement. 

2. The matrices P. and T. 

In this section we prove a very special case of Theorem B. Let T, be an n x n 

matrix with ones on the subdiagonal and superdiagonal and zeroes everywhere 

else. Let P. be a matrix with a one in the lower right hand corner and zeroes 

everywhere else. For n = 1, we take Tt = 0 and P~ = 1. For n = 3, the pictures 

are (0 0) 
T3 = 1 0 1 

0 1 0 

and 

0 0 0 )  

P3 = 0 0 0 

0 0 1 • 

LEMMA 2.1. o'(T.  + iP.)  N R = ~ .  

PROOF. Let p . ( t )  be the determinant of T. + i P . - t ,  and let q . ( t )  be the 

determinant of 7". - t. Hence p, ( t )  = i - t and ql( t )  = - t. Since the determinant 

is linear in the last row, p . ( t )  = q . ( t ) +  iq. ,(t), if we take qo(t) to be identically 

equal to one. On the other hand, 

q , ( t )  = - tq,_,(t)  - q,-2(t) 

with initialization qo( t )= 1 and q~(t)= - t .  

Now suppose t E cr(T, + iP.)  n R. Then p , ( t )  = 0 and hence q , ( t )  = q , - l ( t )  

= 0. Hence qo(t) = 0 by the above recursion relation, but this contradicts qo(t) 

= 1. Hence t r (T .  + iP.)  n R = 0 .  Q.E.D. 

3. The case when M is a I. factor 

In this section we will prove Theorem B when M is a I ,  factor. In this case, M 

is isomorphic to the algebra of linear transformations on a finite dimensional 

Hilbert space H. Let 0 g A = A * E M. We will use P, and T. of the previous 

section to construct a T = T * E  M such that or (T+ i A ) n  R = 0 .  

The following construction will yield T = 0 if A is invertible. In this case, 

o ( T  + iA  ) n  R = cr(iA ) n  R = ~ .  
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Choose an orthonormal  basis {e~}~=~ for H so that A is represented by a 

diagonal matrix. Reorder  the basis so that the first m basis vectors span the 

kernel of A (m < k). Let n = m + 1. Let a E t r (A)  be the first non-zero entry 

on the diagonal of the matrix of A. The matrix of A is either equal to aP, or is 

equal to the direct sum of aP, with an invertible matrix D = D*.  We may write 

A = aP, G D  with the understanding that D may be void. Let T = aT, 0 0  if 

D ~ O  and T =  aT, if D = 0 .  Then o' ( iD)OR = 0  and 

o'(T + iA) = tr(aTn + iaP,) U tr(iD) 

so that t r ( T +  i A ) n  R = ~ by Lemma 2.1. Q.E.D. 

In the above proof, we have used the fact that the spectrum of a direct sum of 

matrices is the union of the spectrum of the matrices. In general we will say that 

Q is the direct sum of E and F, Q = E O F ,  if Q = E + F and there exists a 

projection S (S = S 2 = S*) such that E = SES and F = (1 - S)F(1 - S). We will 

use the facts that the inverse of a direct sum is the direct sum of the inverses and 

the norm of a direct sum is the supremum of the norms without comment in the 

following sections. 

The proof of Theorem B when M is a IL factor is similar to the above 

argument. The diagonalization of A is replaced by the spectral decomposition of 

A. The orthonormal basis e~ for H is replaced by a set of equivalent orthogonal 

projections Ph,, in M. The major difficulty is that the equality A = aP, O D  is 

replaced by an approximation A ~ Y~a~P,., OD. The development of these ideas 

is the subject of the next two sections. 

4. A technical iemma 

M will denote a II1 factor throughout this section. A will be a non-zero 

Hermitian element of M with zero and one in its spectrum. In this section, we 

will prove a technical lemma which will allow A to be approximated by a linear 

combination of projections in a very special manner. These projections will be 

closely related to the spectral family {P(E)}EcR of A (E runs over the Borel 

subsets of R, and A = fRxdP(x).) 

For any projection X E M, dim X will denote  the von Neumann dimension of 

X. Since 1 E o-(A), we may choose a positive number  c such that 

(1) 0 < c < dim P[3/4, 5/4). 

In other  words, c is less than the dimension of the spectral projection of A over 

the half open interval [3/4, 5/4). 
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LEMMA 4.1. For any positive integer k, there exists k numbers, 3/4 =< a~ = • • • =< 

ak =< 5/4, and k orthogonal projections, P, (i = 1, . . . ,  k ), such that 

P~ commutes with A, 

dim P~ = c/k, 

(2) 

(3) 

and 

(4) P(a,_~, a , ) =  < P, _<- P[a,_,, a,] for all i E {1, . - . ,  k} 

where a0 = 3/4. 

PROOF. The proof is by induction on i. As our induction hypothesis we take 

the conclusions of the lemma and 

(5) Plao, a , ) =  < ~, Pj <=P[ao, a,] .  
j= l  

For i = 1, we define 

a~ = sup {d E R I dim P[ao, d)< c/k} 

where we take P[ao, d) = 0 if d -<_ ao. Hence ao_-< al. Condition (1) insures that 

al =< 5/4. The continuity of the yon Neumann dimension function and the fact 

that P[ao, a~) is the supremum of {P[a0, d)l  d < a~} imply that dim P[ao, a~) <= 
c/k. Similarly, dim P[ao, al] >= c/k. Hence dimP[a~, a~] _-> c/k -dimP[a0, al)>_-0 

and we may choose a projection O<=P[a~,a~] such that dim Q =  

c/k - dim P[ao, a~). 
If we let P1 = P[ao, ax) ~) Q, we will have satisfied our induction hypothesis for 

i = 1. In fact P~ commutes with A since it commutes with the spectral family 

of A so that (2) follows. The calculation d imP~= dimP[a0,  a~) 

+ c / k -d imP[ao ,  aj) = c/k demonstrates (3). P~ satisfies (4) and (5) since 

Q <= P[a~, a~]. Finally, a~ < 5/4 since dim P[ao, al) <= c/k _-< c < dim P[3/4, 5/4) 

by (5) and (1). 

Fix i such that 1 < i _-< k. Suppose that aj and P~ have been constructed to 

satisfy our induction hypothesis for all j < i. 

Let X = 1 - E~-_-~ Pj. We will mimic the argument for the case i = 1 by replacing 

a~ with a, and P(E) with P(E)X. Hence we define 

a~ = sup{d E R Idim P[ao, d )X  < c/k}.  

Condition (5) with i replaced by i - 1  implies that P[ao, d )X  = P[a,_~, d)X. 
Hence a~_t <= a,. As before, dim P[a0, a~)X <= c/k and dim P[ao, a,]X >- c/k. 
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Hence we may choose a projection Q,<=P[a, as]X such that dim Qs = 

c / k - d i m P [ a o ,  al)X. If we let Ps = P[ao, as)XGQs, then we will satisfy our 

induction hypothesis. In fact, (2) and (3) follow precisely as in the case when 

i = 1. (5) may be demonstrated as follows. 

P[ao, as)=P[ao, a ,)~,Pj~)Plao,  as)X<= Ps<=P[ao, as]. 
/ = t  i = 1  

(4) is a consequence of (5), and the fact that as--< 5/4 follows from (1) and (5): 

dim P[a0, as) <= ci /k _-< c < dim P[3/4, 5/4). Q.E.D. 

5. The case when M is a 111 factor 

In this section, we prove Theorem B when M is a IL factor. The proof will be 

an application of the matrices T, and P, as in the case when M is a I,  factor. The 

basic constant governing the use of T. and P, is the supremum of the norms of 

(T, + iP, - t) -1 , 

d.  = sup II (T. + i P .  - t ) - '  It, 
t 

where t E R. d, < oo by Lemma 2.1. The reason d, is crucial is the following 

lemma, 

LEMMA 5.1. Let B and C be elements of a Banach algebra with identity. 

Suppose that tr(B) n It = 0 and that 

II c -  B II < i / s u p  II (B - t ) - '  II 
t 

where t varies over the real numbers R. Then 

, , (  c )  n e = 0 .  

The proof of Lemma 5.1 follows from the equality 

( C -  t) -1= (B - t) -1 ~ [(W - C)(B - t)-l]- 
n ~ 0  

which holds for II(B - c) l l  II(B - t ) ' l l  < 1 (see Halmos [3], pp. 53, 151, 245, 
248). With these preliminaries disposed of, we are ready to prove Theorem B for 

a II1 factor M. 

Let 0 ~ A = A * E M. Without loss of generality, we may assume that 0 and 1 

are in the spectrum of A. P(E) will be the spectral family of A arid "d im"  will be 

the yon Neumann dimension function as in the previous section. 
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The construction of a T such that o ( T  + i A )  CI R = O and T = T* proceeds in 

six steps: 

1) Let m be a positive integer such that 

(dim P [ -  1/4, 1/4])/m < (dim P[3/4, 5/4))/2. 

2) Let n = m + 1. Let e >0 ,  e < 1/4, and e < (3/4)/d,. 

3) Choose a positive integer k > l / ( 2 e )  and divide P [ - e ,  e] into m k  

equivalent orthogonal projections Ph., (h = 1,." ", m and i = 1 , . . . ,  k):  

h . i  

From step 1), dim PI.~ = dim P[ - e, el /rnk  < dim P[3/4, 5/4)/2k. Loosely speak- 

ing, this means that 2k copies of Pt.l will fit into P[3/4, 5/4). 

4) We may apply Lemma 4.1 with c replaced by 2 dim P [ -  e, e] /m and k 

replaced by 2k to obtain 2k numbers a~ and 2k orthogonal projections P', which 

are equivalent to PI.~ and which satisfy 

i) P', commutes with A, 

ii) 3 / 4 = a 0 < - a l . - -  =< a2k =< 5/4, 

P , =  P[a,_,, a~] for all i = 1 , . . . , 2k .  iii) P(a~_,, a,)<= ' <  

5) Choose k of the ordered pairs (P',, a~) with a, - a,_~ < e and call them 

(P,.,, a,).  Now i = 1 , . - . ,  k again, k such P', exist for otherwise 

2k  

a, - a , -1  > ke > 1/2 
i = l  

by our choice of k. But this contradicts condition ii) on the a,. Recall that we set 

n = m + l  in step two. 

The point is that 

where h = 1,. •., n and i = 1, . . . ,  k, as follows from the spectral theorem, the 

fact that a, - a,-i < e, and the choice of the Ph.~ in steps 3) and 4) t. Furthermore, 

A ( 1 -  ~ , P h . , ) i s  invertible in ( 1 -  Y ~ P h . o ) M ( 1 -  Y'~,Ph.,). 

6) Let T,., have the matrix of T, in the basis P~.,, • •., P,~,. In other words, let 

7",., = ~'~=~ Uh., + U*,where  Uh., is a partial isometry with initial domain Ph., and 

final range Ph+~.,. Let T = ~a,T,~, .  Now apply Lemma 5.1 in the algebra 

Z~Ph.,MEh.~Ph., with B = T +  i~,~ a,P,., and C = T +  iAEh.,Ph., to obtain 

A E~,.,Ph,, - Z,  a,P,., II = sup { II A ~.~-'~ k Ph., [I, II A E,~P.,, - E?a,P,~, N} =< sup, {ll A P (  - e, e )1[, 

II(A - a,)e[a.-,a,]ll} <- - ~. 
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or(T+ i A ) n  R = 0 .  

Lemma 5.1 applies since o'(B) n R = O by Lemma 2.1' and 

I l B - C l l  = A ~ P h . , -  ~a,P, . , l<=e<(3/4) /d .  

and 

since 1/a, < 1/(3/4). Q.E.D 

6. Conclusion 

Section 5 completes the proof of Theorem B. Using the same argument as in 

the proof of Theorem B of [2], we obtain our Theorem C: 

THEOREM C. For all non- zero A in a ]inite [actor M, there exists a T E M such 
that or(T+ A ) A  o-(T) = 0 .  

It is easy to see that if A is contained in a proper two sided ideal of a Banach 

algebra with identity, M, then o'(T + A)  n o-(T) ~ O for all T U M (this is 

theorem A of [1]). Hence the well-known fact that the finite factors are simple 

(i.e. they have no non-zero proper two sided ideals) is a consequence of our 

arguments. It would be interesting to know if Theorem C is true when M is an 

arbitrary simple C*-algebra. 
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